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Abstract—In Federated Learning (FL), clients independently
train local models and share them with a central aggregator to
build a global model. Impermissibility to access clients’ data and
collaborative training make FL appealing for applications with
data-privacy concerns, such as medical imaging. However, these
FL characteristics pose unprecedented challenges for debugging.
When a global model’s performance deteriorates, identifying the
responsible rounds and clients is a major pain point. Developers
resort to trial-and-error debugging with subsets of clients, hoping
to increase the global model’s accuracy or let future FL rounds
retune the model, which are time-consuming and costly.

We design a systematic fault localization framework, FEDDE-
BUG, that advances the FL debugging on two novel fronts. First,
FEDDEBUG enables interactive debugging of realtime collabora-
tive training in FL by leveraging record and replay techniques
to construct a simulation that mirrors live FL. FEDDEBUG’s
breakpoint can help inspect an FL state (round, client, and global
model) and move between rounds and clients’ models seam-
lessly, enabling a fine-grained step-by-step inspection. Second,
FEDDEBUG automatically identifies the client(s) responsible for
lowering the global model’s performance without any testing data
and labels—both are essential for existing debugging techniques.
FEDDEBUG’s strengths come from adapting differential testing
in conjunction with neuron activations to determine the client(s)
deviating from normal behavior. FEDDEBUG achieves 100%
accuracy in finding a single faulty client and 90.3% accuracy
in finding multiple faulty clients. FEDDEBUG’s interactive de-
bugging incurs 1.2% overhead during training, while it localizes
a faulty client in only 2.1% of a round’s training time. With
FEDDEBUG, we bring effective debugging practices to federated
learning, improving the quality and productivity of FL applica-
tion developers.

Index Terms—software debugging, federated learning, testing,
client, fault localization, neural networks, CNN

I. INTRODUCTION

Many machine learning models today require private user

information for high-quality training. However, users are nat-

urally reluctant to share such data to minimize the risk of pri-

vacy violation. To address the above needs, Federated Learning

(FL) [37] enables individual participating clients (e.g., smart-

home edge devices) to train a machine learning (ML) model

on their local data in a privacy-preserving environment and

then send the trained model (e.g., the weights of the neural

network) to a central aggregator to build a global model. FL

trains highly accurate models without ever accessing user data,

keeping clients’ data privacy intact [22]. With the advent of

frameworks like FedML [14] and IBMFL [33], FL is actively

used in solving real-world problems [19, 32, 41, 59].

Problems. The support for collaborative yet privacy-preserving

training in FL comes at the cost of transparency and com-

prehension, making debugging prohibitively complicated. For

instance, a faulty client can send an inaccurate model to the

aggregator either due to noisy labels [17, 27, 28] in the training

data or malicious intent to deteriorate the global model’s

performance [2]–[4, 39]. Finding such a faulty client is chal-

lenging due to a large number of unpredictable clients that may

not have participated in every round because of a poor network

connection or low battery power [45, 52]. The FL training

process also spans numerous rounds, significantly increasing

the search space for identifying the true culprit round. None

of the existing FL frameworks provide debugging and testing

support to developers when building FL applications [22].

These developers rely on guesswork and expensive trial-and-

error debugging to find a fault-inducing client.

Challenges. FL poses two fundamental challenges when de-

signing a debugging technique. First, in FL deployments,

training and testing data are kept private and strictly reside

with clients. Access to such data could allow developers to

evaluate individual clients’ models sent to the aggregator and

identify the lowest-performing model as the culprit, similar to

traditional ML model testing. Neither test data nor labels are

available to an FL application developer and, therefore, exist-

ing ML debugging approaches [38, 40, 49] are inapplicable.

Second, due to the unpredictability of clients’ participation

in a round and the ephemeral nature of their contributions

in the global model, reproducing a fault (i.e., faulty client)

and then debugging it is not feasible. Traditional breakpoint

debugging will pause the entire training process in FL across

all clients, causing severe side effects such as data loss as

clients may not have persistent storage to store data. Live

postmortem or trial-error debugging may lead to a new set of

clients for each round based on client availability and quorum,

thus making debugging even more ineffective. Considering the

above limitations and challenges, we must design a debugging

approach that does not rely on clients’ data, can debug a live

FL application without any interference, and can localize a

faulty client precisely.
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Contributions. We take inspiration from traditional debuggers,

such as gdb, and redesign traditional debugging constructs

that are tailored to the needs of an FL application developer.

Our approach, FEDDEBUG, selectively records an FL applica-

tion’s telemetry data to enable realtime interactive debugging

on a simulation that mirrors a live FL application. With

FEDDEBUG’s breakpoint, a developer can spawn a simulation

of a live FL application and inspect the current state con-

taining information such as clients’ models and their reported

metrics (e.g., their training loss or hyperparameters). It also

allows a seamless transition between the rounds and clients

at a given breakpoint, enabling a fine-grained step-by-step

inspection of the application’s state. When a developer finds a

suspicious state (e.g., multiple clients report high training loss),

FEDDEBUG’s automated fault localization approach precisely

identifies the faulty client(s) without any test data or labels.

Once a faulty client is identified, FEDDEBUG’s fix and replay
repairs the global training by retroactively removing the faulty

client and resuming the live FL training.

Key Insights. FEDDEBUG leverages several insights to enable

systematic FL debugging while preserving clients’ privacy. We

observe that instead of debugging a live FL application, we

can record a set of runtime metrics essential to regenerate a

given state in an FL application. Thus, FEDDEBUG performs

debugging on a regenerated simulated state equivalent to a

live state. To have a measurable impact on the global model,

a faulty client’s model must behave differently than the regular

clients. Every client in an FL application has the same model

architecture, so their internal behaviors are comparable. Based

on this insight, FEDDEBUG proposes an inference-guided

test selection method to select high-quality and diverse test

data from a pool of randomly generated input images using

Kaiming Initialization [15]. However, an auto-generated data

does not include the class label i.e., an oracle. To address the

oracle problem with such data, FEDDEBUG adapts differential

testing to FL domain. It captures differences in the models’

execution via neuron activations instead of output labels to

identify diverging behavior of faulty clients.

Evaluations. We perform large-scale, extensive evaluation of

FEDDEBUG on popular models, two large-scale datasets, two

well-established FL data distributions, and a real-world fault-

injection technique in a total of 68 different FL configura-

tions. We measure FEDDEBUG’s fault localizability, debug-

ging time, performance overhead over a vanilla FL frame-

work (IBMFL), and scalability. FEDDEBUG shows remarkable

success in identifying faulty clients. It can localize the real-

world faulty client with 100% accuracy within 2.1% of a

round’s training time. When faced with multiple faulty clients,

FEDDEBUG retains the high fault localization accuracy of

90.3%. FEDDEBUG’s debugging constructs incur an overhead

of 48% of the aggregation time to record telemetry data for

state regeneration. Surprisingly, this time is only 1.2% of

a single round’s training time in our experiments. Through

our evaluation, we demonstrate that FEDDEBUG effectively

conducts interactive debugging and efficiently automates fault

localization without incurring high runtime costs. FEDDEBUG

Fig. 1: In a centralized FL architecture, an aggregator sends a

global model to clients (step 1). Each client trains the model

on local data (step 2) and sends the locally trained model back

to the server (step 3). The server aggregates all models to form

a new global model (step 4).

augments the IBMFL framework, but its underlying insights

can be adapted for other FL frameworks.

We summarize FEDDEBUG’s contributions below:

• Originality: To the best of our knowledge, FEDDEBUG

is the first general-purpose debugging framework for fed-

erated learning applications that is not limited by access

to clients’ data. It addresses open debugging challenges

in FL [22].

• Approach: Traditional ML trains a single model, whereas

FL involves distributed training across hundreds of clients

over multiple rounds. Thus, existing ML debugging ap-

proaches are inapplicable on FL. FEDDEBUG’s novelty

lies in observations about FL and the exploitation of in-

sights on reproducibility, inference guided test generation,

and differential testing that do not impede performance

or violate FL privacy principles.

• Benchmark: We evaluate FEDDEBUG in 68 FL config-

urations derived from well-established datasets, models,

varying clients, data distribution, and fault-injections.

We package our experiment environment into a public

benchmark for future research use.

• Usefulness: Our extensive experiments demonstrate that

FEDDEBUG successfully locates faulty client(s) with-

out impeding the FL workflow. On a wide range of

experiments, FEDDEBUG exhibits robust results against

multiple faulty clients, challenging data distributions, and

a large number of clients. FEDDEBUG’s artifact and the

benchmarks used in this work are publicly available at

https://doi.org/10.5281/zenodo.7578656.

II. BACKGROUND AND MOTIVATION

A. Federated Learning

In Federated Learning, multiple clients independently train

local models on their data and share it with a central server

(also called an aggregator) to construct a global model. During

this collaborative training, clients’ training data never leaves

their premises [22]. Figure 1 shows an FL setting where

multiple hospitals collaboratively train a global model on their

local labeled medical imaging data.
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1) In the first step, the aggregator sends copies of the

current global model, i.e., the global model weights,

and hyperparameters (e.g., learning rate and epochs) to

participating clients (Step 1 of Figure 1).

2) Using the global model as initial parameters, each client

trains a model on its local data similar to traditional ML

training (Step 2 of Figure 1).

3) Once trained, each client sends its local model, in the

form of updated weights, back to the aggregator as

shown in Step 3 of Figure 1. Additionally, clients share

performance metrics such as training loss and qual-

ity/quantity of training data with the central aggregator.

4) After receiving model updates, the server aggregates

the updated weights from all clients using established

model aggregations (also called fusion) techniques such

as FedAvg [37] to form a new global model (Step 4).

The four steps are repeated for a fixed number of rounds
or until the global model meets some convergence criteria, for

example, when training loss is close to zero. Note that not

every client participates in every round. There are additional

variants of federated learning (FL) such as vertical FL [31],

FL with differential privacy [50], and personalized FL [44].

Our work mainly focuses on the standard FL [37].

B. Motivating Scenario

Suppose that an FL application developer trains a global

neural network model, ResNet [16], on chest X-ray images

from hospitals across the country to diagnose respiratory

diseases (e.g., Covid-19). The term developer refers to a

person who writes, deploys, and monitors the FL application

at the central server, as shown in Figure 1. Every participating

hospital collects X-rays of patients labeled by radiologists and

trains a local ResNet model on that data. Hospitals periodically

share their locally trained models with a central server. The

central server then aggregates these shared models into one

global model. After aggregation, the central server sends the

updated global model to each hospital to incorporate in local

training in the next round, as shown in Figure 1.

The developer observes that multiple hospitals are reporting

a high training loss from their preceding training rounds. One

plausible reason is that one of the hospitals performed training

on noisy data (mislabeled by inexperienced staff [8, 28]) and

continuously impacted the global model during aggregation.

Thus, when the global model is shared back with the other

hospitals, it influences their training.

Challenges of FL Debugging. After noticing an increase in

training loss, the developer must investigate the root cause, as

misdiagnosis from medical imaging can lead to ill treatment.

To debug the FL application at this scale, the developer

begins by manually inspecting various collected logs at the

central server, including the global model weights, shared

local models from hospitals, and the response and training

time of each hospital. Due to patient privacy, the hospitals

refrain from sharing their labeled training data, which is

critical for correctly evaluating the quality of a model and thus

essential for localizing the faulty round and model. Even if the

developer finds the problematic round, she cannot isolate the

hospital(s) responsible for affecting the global model without

test data. One option is cross-validating each client’s model by

requesting that the other clients test the model on their local

data. This is prohibited in practice, as it adds computational

burden on clients (e.g., edge devices) and can potentially cause

data privacy violation. Lastly, statically inspecting hospitals’

models does not provide any meaningful information. Without

any debugging techniques at her disposal, she resorts to using

guesswork to identify the hospital with noisy labels.

FEDDEBUG’s Contributions. The developer decides to use

FEDDEBUG to investigate the root cause behind high training

loss. When enabled, FEDDEBUG allows a developer to set a

breakpoint at any round or even in the first round to cap-

ture the end-to-end training logs. This breakpoint separately

invokes a debugging session, a simulation of the original FL

service, without stopping the live training. In the debugging

session, the developer uses FEDDEBUG’s step-back and step-
next constructs to move between rounds, inspecting the global

and local models of hospitals. Upon inspecting the training

rounds, she finds the specific round, e.g., round 8, where the

performance starts to deteriorate. This round can be different

from the breakpoint enabled round, as performance issues

can manifest in earlier rounds but surface later. During this

inspection, FEDDEBUG also reports the list of hospitals that

participated in that round. Next, she invokes FEDDEBUG’s

fault localization algorithm to precisely identify the hospital

responsible for deteriorating the global model performance.

After finding the hospital with noisy labels, the developer

removes it from the problematic round (i.e., round 8) and

onwards. FEDDEBUG’s fix and replay starts retraining from

round 8 to the current round and then replaces the impacted

global model with the retrained global model and switches

back to the original FL training.

III. FEDDEBUG’S DEBUGGING CONSTRUCTS

The goal of FEDDEBUG is to facilitate an FL application

developer in isolating a faulty client responsible for deteriorat-

ing the global model performance. Recent studies emphasize

the need for debugging techniques in FL applications and

the challenges associated with providing debugging support

in FL frameworks [22]. To this end, we must overcome the

following major challenges in designing FEDDEBUG. First,

the privacy concerns of FL put restrictions on any client-side

interference. Second, the unpredictable and ephemeral nature

of clients in FL poses a threat to reproducibility, which is

critical for debugging a live system. Third, the distributed

nature of FL with hundreds of participating clients makes

traditional breakpoint debugging ineffective. Pausing the entire

FL application at this scale will be prohibitively expensive.

Therefore, traditional debugging approaches, such as gdb, are

not suitable for the scale and architecture of FL systems.

In FEDDEBUG, we address the above challenges and ad-

vance systematic FL application debugging. We enable real-

time, interactive debugging on a simulation of the live FL

application. To do so, FEDDEBUG continuously collects and
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Fig. 2: Using FEDDEBUG, a developer can set a breakpoint
at round 20. When the FL application finishes round 20,

FEDDEBUG launches a Debugging Interface, reflected on the

right. Step next (�) takes the developer to the next step (round

or client). Step-in increases the granularity of computation,

e.g., round to client level. Resume (�) rejoins the current

execution status of the FL application if no intrusive actions

are taken. At a given round, FEDDEBUG can automatically

localize the faulty client (�) and then resume (�) upon which

the global model will be recomputed without the faulty client.

This model will replace the corresponding round's model, and

FEDDEBUG will start retraining from that round, round 22,

in the FL interface.

stores concise telemetry data from a live FL application.

Whenever a debugging need arises, the developer can inter-

act with FEDDEBUG’s debugging interface, which uses the

telemetry data, to regenerate an FL application’s state.

A. Selective Telemetry

FEDDEBUG collects critical FL execution metrics to repro-

duce an FL application's state for the developer to interact with

it while investigating the root cause of a problem. Existing FL

frameworks are carefully architected to refrain from revealing

private data. As a result, most debugging data is private and

cannot be investigated.

FEDDEBUG’s debugging approach is inspired by replay

debugging. As with any other replay debugging approach,

it is essential that FEDDEBUG stores the necessary runtime

metrics to reproduce an FL application's state if requested

by the developer. We design a highly selective FL event

telemetry technique that records the concise execution data

available at the central aggregator that is vital for generating

any prior FL application state. FEDDEBUG is different from

traditional replay debugging as it only tracks the information

needed to recreate an observable event and does not log the

information unavailable to the developer in a live application.

This design reduces the size of continuously growing telemetry

data and minimizes the likelihood of information leakage.

FEDDEBUG mainly stores the information available after

step 3 of Figure 1 which is clients’ models, their reported

metrics such as response time, training loss, validation loss,

performance metric (e.g., F1 score), hyperparameters (e.g.,
learning rates, epochs, weight decay), and round ID. Note that

the FL application, including client-side training, will continue

uninterrupted in the background with FEDDEBUG’s telemetry

module continuously collecting execution traces.

B. Interactive Replay Debugging

To start the interactive debugging process, a developer can

invoke FEDDEBUG’s debugging constructs that let the devel-

oper leverage the telemetry data to investigate the root cause.

Breakpoint debugging is the de-facto method of debugging a

program. It pauses the program when the execution reaches

it. At that point, a developer can inspect the values assigned

to different variables, both local and global, and examine

the method stack. Such debugging features are not applicable

in FL. The traditional breakpoint will pause the distributed

training, resulting in unnecessary idling at the client side.

Additionally, since the state of a round is not saved, it is

currently impossible for the developer to inspect previous

rounds. For instance, a developer may want to debug a latent

issue that was introduced by a client five rounds ago but

surfaced in the current round when the same client participated

in training again.

We make the following observation about FL frameworks.

An FL application only reveals aggregator's events to a de-

veloper. In contrast, events on the client's side are entirely

hidden from the developer except the ones relayed to the

aggregator by the client. Building on this observation and the

telemetry data captured by FEDDEBUG, our insight is that

instead of debugging a system in real-time, we can recreate

its observable behavior in a simulated environment, giving

an illusion of debugging an FL application in real-time. By

doing so, inspections with FEDDEBUG are side-effect free,

i.e., FEDDEBUG will not interfere or interrupt the live FL

application. Thus, eliminating the need to pause client-side

training or halt FL aggregator execution.

Breakpoint. To this end, FEDDEBUG offers breakpoint that

can help a developer inspect intermediate states of an FL

application. FEDDEBUG’s breakpoint operates on computa-

tion units of rounds. Any abnormality in the client-reported

metrics, such as training loss, validation loss, response time,

and performance metrics (e.g., F1 score) can necessitate the

use of breakpoints. FEDDEBUG allows setting a breakpoint at

any arbitrary round during live FL. A developer can also set

a breakpoint from the start (i.e., round 0) to capture end-

to-end FL training traces or on a specific round (e.g., round
20 in Figure 2-�) to inspect FL training at that round. When

the live FL application arrives at a breakpoint, FEDDEBUG

spawns a new debugging interface on the aggregator side, as

shown in � in Figure 2, while continuing the live FL training

in the background.

Step in/Step out. While at a breakpoint in a debugging

session, a developer can use step-in and step-out actions to

switch between different granularities of computational units.

Traditionally, these two actions are used to go one-level deeper

in the stack (e.g., inside a function call) and move one level up

in the stack (e.g., outside the function call), respectively. Based

on this convention, we define a round as a coarse-grained

unit of computation that can be decomposed into a subset

of clients participating in that round. Suppose the current

breakpoint is at round 20. Step-in will take the developer
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to the clients-level granularity (� in Figure 2) where trained

models from clients are being aggregated, using a fusion

algorithm (e.g., FedAvg [37]). Step-out will take the developer

back to the level of rounds, allowing them to inspect the global

trained model at a higher level of abstraction and understand

its performance across multiple rounds. Inspecting a state at

client-level granularity entails evaluating the performance of a

partially-aggregated global model. For example, in Figure 2,

step-in at � will take the execution between C1 and C3, where

the global model has yet to incorporate the local models of

clients C5 and C8.

Step Next/Step Back. Similar to step-in/out, step next and step
back help a developer transition from one state to another. For

instance, if the breakpoint is at round 20, step next will take

the execution to round 21 in the debugging interface, show-

ing information corresponding to that round only. Similarly, if

the breakpoint is at client C5, step back will take the execution

state to a partial global model after aggregating models from

clients C1 and C3 only (Step back in Figure 2).

Resume. Unlike resume in gdb, FEDDEBUG’s resume does

not resume any paused execution. Instead, resume gives the

illusion to the developer that execution is being continued

from where it left off. FEDDEBUG creates this environment by

replaying the telemetry data that was captured while the FL

application was being inspected using breakpoints, in case the

developer does not find any faults in the round under inspec-

tion. Once the sequence of events in telemetry catches up with

the live execution of the FL application, FEDDEBUG switches

to the FL interface and shuts down the debugging interface.

This three-step process is nearly indistinguishable from an FL

application with FEDDEBUG disabled, giving the impression

of debugging a real-time FL application interactively. Resume
is also illustrated in Figure 2 - �.

C. Fix and Replay

When the developer successfully identifies a faulty client

in any round, FEDDEBUG offers Fix and Replay to allow a

developer to roll back the training and provide a retrained

global model (the one without a faulty client). We describe

the technique to identify a faulty client in Section IV. A faulty

client may have a compound effect on the global model, as

it may have begun to share its noisy model updates latently

several rounds ago, which only later becomes noticeable. In

such cases, it is important to rectify the impact of a faulty

client's inclusion in prior training rounds by removing its

contributions. This requires retraining over multiple rounds,

which is not possible as clients may not store the data used in

training in the prior rounds. Figure 2-� shows the removal of a

faulty client (C5) in round 21. FEDDEBUG recomputes the

global model in the debugging interface and then replaces the

actual global model in round 22 with the newly recomputed

global model after fix and replay (Figure 2-�). By default,

FEDDEBUG forbids the faulty client from participating in the

FL training. However, it is up to the developer to weigh the

benefits of including the faulty client in future rounds.

Fig. 3: An overview of FEDDEBUG’s fault localization ap-

proach. It first selects a random input that invokes diverse

model behavior (A). It then applies differential execution on

clients’ models to localize a faulty client (B).

IV. FAULTY CLIENT LOCALIZATION

Faults in a client’s model can arise due to measurement

errors, human labeling errors, data poisoning, communication

problems, or subjective biases of labellers. For a high-quality

global model, it is critical to correctly identify a faulty client

and potentially restrict its participation. Manually identifying

faulty clients is neither scalable nor effective due to a large

number of participating clients in FL and their uninterpretable

models. Furthermore, the model parameters (i.e., weights)

do not provide any meaningful debugging information. To

automate faulty client localization, we must define a feedback

mechanism to guide our search for faulty clients efficiently.

Automated debugging tools [26, 55] for regular software

address this problem by relying on multiple test inputs and a

test oracle. For example, unit tests can guide the search toward

concise input leading to incorrect program output [55]. In FL,

the inputs and oracle translate into diverse test data and the

corresponding accurate labels, both of which are unavailable

to the developer at the central server.

FEDDEBUG addresses the challenges of automated fault

localization with a two-pronged approach. First, it generates

a pool of random test inputs and applies a novel inference-

guided test input selection to construct a suite of test inputs,

as shown in Figure 3-A. Since the test inputs are generated

autonomously and are not accompanied by ground truth labels,

metrics such as F1 score or accuracy cannot be used as

oracle feedback to identify a faulty client. Instead, FEDDEBUG

performs differential testing of clients’ models to measure

similarities and differences among models’ behaviors on se-

lected inputs (Figure 3-B). FEDDEBUG fingerprints a neural

network behavior on an input by profiling the internal neu-

rons’ contributions towards a model prediction. Subsequently,

FEDDEBUG accurately recognizes a client as faulty if its

behavior deviates from the norm, which is the majority of the

clients’ behavior. Our insight is that a faulty client’s model
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Algorithm 1: Inference-Guided Test Input Selection

Input: shape: dimension of the random input to be generated.
Input: κ: number of inputs to be generated.
Input: η: minimum number of clients for the same prediction.
Output: X: a list containing auto-generated test inputs.

1 rand inputs = lazilyGenerateRandInputs(shape)
2 X = list() // a list for inference guided test inputs
3 seen clients sequences = list()
4 while length(X) < κ do
5 r input = pop(rand inputs)
6 clients preds = getPredictions(clients, r input)
7 for label ∈ class labels do
8 clients seq = samePredClients(clients preds, label)

9 if clients seq �∈ seen clients sequences and
length(clients seq) ≥ η then

10 seen sequences.append(clients seq)
11 X.append(r input) // valid test input
12 break

13 if length(rand inputs) < 1 then
14 rand inputs = lazilyGenerateRandInputs(shape)

15 return X

will show a noticeable difference in its internal neuron values

compared to benign clients’ models, based on the principle

that faulty executions are intrinsically different from correct

ones. The same principle is behind popular fault localization

techniques, such as spectra-based fault localization [21] and

delta debugging [55].

Inference-Guided Test Input Selection. As shown in Figure 3-

A, FEDDEBUG first lazily generates a pool of random test

inputs using Kaiming Initialization [15]. For example, if the

clients’ models are trained on 32x32 images within the RGB

scale, then FEDDEBUG randomly creates a pool of synthetic

inputs with the same size and format (i.e., random images of

size 32x32 in RGB scale). It then automatically selects only

those inputs that lead to a consensus on predictions among a

unique subset of clients. FEDDEBUG selects up to κ test inputs

(default is κ = 10) among the pool of 1000 random inputs.

The goal is to minimize any overlapping behavior between

clients while inferring unique class labels on selected test

inputs. This is similar to achieving maximum code coverage

in regular software with minimum tests. Algorithm 1 selects

a test input (line 5) if at least (η ≥ 5) clients predict the

same label and that subset of clients has not been seen in

a previously selected input (lines 6-11). On the next ran-

dom input, if the previously observed subset of clients (i.e.,
clients seq ∈ seen clients sequences) predict the same

class label, we discard this input. If a unique combination of

clients predicts an unseen label, we include the input in the test

suite. This process is repeated until we collect a user-defined,

κ, number of test inputs.

Differential Execution of Clients Models. In the absence of

correct labels of generated test inputs, FEDDEBUG adapts

differential testing to find behavioral differences and sim-

ilarities among clients’ models, as shown in Figure 3-B.

FEDDEBUG profiles the contributions of individual neurons

during model inference on an input and uses these neurons

Algorithm 2: Faulty Client Localization using Differ-

ential Testing

Input: clients: a list of clients participated in the given FL round.
Input: x: a random input belongs to X .
Input: na t: a threshold to profile neuron activations.
Output: faulty client: the faulty client who has abnormal behavior.

1 all clients combinations = nChooseK(clients, 1)
2 benign clients = set()
3 max common activations = −1
4 for t clients ∈ all clients combinations do
5 neuron ids = ActivatedNeurons(t clients, x, na t)
6 t clients common neurons = intersection(neuron ids)
7 temp n = length(t clients common neurons)
8 if temp n > max common activations then
9 max common activations = temp n

10 benign clients = t clients

11 faulty client = clients− benign clients
12 return faulty client

activations to identify models with common behavior. Note

that clients’ models in FL are comparable due to having a

similar architecture. Algorithm 2 describes the faulty client

localization process. For a selected test input, FEDDEBUG

exhaustively iterates all possible combinations of potentially

non-faulty clients (i.e.,
(
n
1

)
combinations). For each combina-

tion, Algorithm 2 performs model inference on the test input

and captures its neuron profiles. FEDDEBUG aims to find one

combination of clients that has the highest overlap in behavior,

representing the true n − 1 benign clients and consequently

isolating the precise faulty client. This is a lightweight process

due to the negligible model inference time and the iterations’

linear time (O(n)) complexity.

Our insight is that among all possible combinations of

clients, only one represents true benign clients’ subset. The

remaining combinations contain the faulty client with abnor-

mal neuron activations, reducing the model behavior overlap

within that set. In summary, at a given ill-performing round in

FL, FEDDEBUG takes in all participating clients’ models as the

only input. It automatically generates test inputs and employs

differential testing on clients’ models to monitor abnormal

behavior to precisely identify a faulty client.

V. EVALUATION

We evaluate FEDDEBUG on (1) runtime performance over-

head, (2) debugging time, (3) fault localizability, and (4) scal-

ability. Our evaluation aims to answer the following research

questions:

• RQ1. What impact does FEDDEBUG have on the baseline

FL framework’s performance?

• RQ2. How accurate is FEDDEBUG in identifying a faulty

client?

• RQ3. Can FEDDEBUG identify multiple faulty clients?

• RQ4. Can FEDDEBUG scale to large number of clients

and find a faulty client efficiently?

Datasets, Models, and FL Framework. We evaluate FEDDE-

BUG on CIFAR-10 and FEMNIST datasets. Both are consid-

ered as gold standard to evaluate FL experimental settings [9,
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30]. FEMNIST is a modified version of MNIST presented in

the FL LEAF Benchmark [7] and the Non-IID Bench [30].

The FEMNIST dataset includes more than 340K training and

40K testing grayscale images, each with a resolution of 28x28

pixels, representing ten distinct class labels. CIFAR-10 con-

tains 50K training 32x32 RGB images that span ten different

classes and 10K instances for testing. We adopt popular CNN

models, namely ResNet [16], VGG [43], and DenseNet [18]

architectures. We set the learning rate between 0.0001 and

0.001, the number of epochs between 10 and 25, the batch

size from 512 to 2048, and the weight decay to 0.0001. We

realize FEDDEBUG’s design in the IBMFL library [33] due

to its ease of use, open documentation, and publicly available

codebase. These techniques should be equally applicable to

other FL frameworks.

Evaluation Environment Specifications. We run our experi-

ments on an AMD 16-core processor with 128 GB RAM and

an NVIDIA Tesla T4 GPU. To measure the performance of

FEDDEBUG in terms of runtime and debugging overhead, we

simulate IBMFL framework deployment on a MacBook Pro

with a Quad-core Intel Core i5 processor and 16 GB RAM.

Federated Learning Experimental Settings. Prior FL litera-

ture [7, 30] establishes two data distribution strategies among

FL clients: IID (independent and identically distributed data)

and Non-IID (non-independent and identically distributed

data). For Non-IID, we use the quantity base imbalance [30]

where clients have an unequal quantity of data, and the class

distribution is random. In IID, the clients receive the same

quantity of data. None of the clients share the same data points

in both settings. We simulate FL with a varying number of

clients, ranging from 10 to 400 clients, in each FL training

round. In practice, even with millions of clients, only a subset

(in the order of hundreds) is selected in a round. Therefore,

our experiment settings are representative of real-world FL

deployments [1, 5, 24, 30, 37, 48].

Fault Injection. Since there is no existing FL benchmark

with faulty clients, FEDDEBUG adopts a standard noisy labels

approach from prior machine learning literature to inject a

faulty client in our experiments [10, 17, 20, 29, 53]. Similar

to prior work [11, 27, 36], we arbitrarily add noise by changing

training data labels (e.g., changing label “bird” to “cat”). When

such a client’s model is merged with the global model, the

global model’s performance (e.g., accuracy) deteriorates. We

define different strengths of a fault with a noise rate that

controls the number of labels modified in a faulty client. Noise

rate is defined as a ratio between changed labels and original

labels (changed-labels/original-labels).

Figure 4 shows the impact of different noise rates on the

global model’s accuracy, with one faulty client and nine benign

clients. Low noise rates, ranging from 0.2 to 0.7, barely affect

the global model performance. With a 0.7 noise rate, the

accuracy is lowered by 4.8% and 5.5% in CIFAR-10 and

FEMNIST, respectively. A noise rate of 0.9 incurs a 16.2%

and 9.9% reduction in the global model accuracy in both

settings. Thus, to have a measurable impact on the global

model’s performance, we select a noise rate of one for a faulty
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Fig. 4: Global model (ResNet-34) prediction accuracy in the

presence of a faulty client with different noise rates. Lower

noise rates hardly degrade global model performance.

client. Still, we perform sensitivity analysis in Section V-B

(Figure 7) by measuring the impact of varying noise rates on

FEDDEBUG’s fault localizability.

Neuron Activation Threshold. We adopt the method from

Harel-Canada et al. [13] to profile neuron activations. We

empirically find 0.003 as the optimal value for the default

activation threshold (see Section V-C). A neuron is considered

active when its value crosses this threshold.

Faulty Client Localization Accuracy. We calculate faulty

client localization accuracy as the ratio between (a) the number

of test inputs on which faulty clients are correctly identified

and (b) the total number of test inputs. For instance, if

FEDDEBUG identifies the correct set of faulty clients on four

out of ten test inputs generated by Algorithm 1, we report 40%

fault localization accuracy.

A. FedDebug’s Performance

Capturing telemetry data in realtime may slow down the

performance of an FL application’s aggregator. In this subsec-

tion, we present the evaluation results of FEDDEBUG’s runtime

overhead and the fault localization time. These experiment

settings employ ResNet-18 with CIFAR-10.

Runtime Overhead (RQ1). To evaluate the impact on the

FL application’s performance, we measure the slowdown in

the running time that FEDDEBUG incurs. We compare the

cumulative processing time of the vanilla IBMFL’s aggregator

(baseline) against that of the FEDDEBUG-enabled aggregator

on a variety of client combinations, ranging from 5 clients

to 100 clients. The aggregation time varies with the model’s

architecture and the number of clients participating in a

round, but it is completely independent of the models’ quality.

Therefore, we create up to 100 pre-trained ResNet-18 models

and perform the aggregation.

Figure 5 compares the baseline’s aggregation time with the

FEDDEBUG enabled aggregation time. The X-axis represents

the number of clients ranging from 5 to 100 clients, and

the Y-axis represents the average time across two FL rounds.

For instance, with 30 clients, FEDDEBUG takes 3.9 seconds

compared to the 2.5 seconds for the baseline to aggregate

30 trained models into a global model. Overall, FEDDEBUG

takes approximately 48% additional aggregation time across

all experiments. However, in an end-to-end round, the training

phase on the clients’ end occupies the majority (up to 97.8% in
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Fig. 5: FEDDEBUG’s runtime overhead as a comparison be-

tween vanilla FL framework’s aggregation time with FEDDE-

BUG enabled FL aggregation.
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Fig. 6: FEDDEBUG’s debugging time contains input generation

time and faulty client detection time and is compared against

a round’s training time.

our experiments) of the round’s time. Compared to the training

time of a round, the aggregation time is almost negligible, as

low as 1.2% in our experiments.

Summary: Considering the training and aggregation time

of each FL round, FEDDEBUG’s runtime overhead is a very

small fraction, 1.2%, of the training time. Hence, capturing

telemetry data for replay debugging does not impede the FL

application’s runtime performance.

Debugging Time (RQ1). To assess the localizability of FED-

DEBUG, we design experiments to measure FEDDEBUG’s

debugging time, the time it takes to localize a faulty client.

We then compare this time with the training time of that

round. Since there is no comparable approach to localize a

faulty client, we use training time as a baseline to provide a

meaningful scale for the cost of debugging.

Figure 6 shows the results of these experiments. The X-

axis represents the number of clients, and the Y-axis shows

the debugging time in seconds on a logarithmic scale. For 30

clients, FEDDEBUG’s input generation and selection takes 0.2

seconds to find high-quality test input, and its fault localization

takes approximately 0.5 seconds to localize a faulty client. In a

ten clients setting, input selection takes longer due to constraint

η = 4 for criteria 1 in Figure 3. η = 4 means that at least

four previously unseen clients should predict the same label

on newly selected test input.

TABLE I: FEDDEBUG’s debugging time and accuracy when

localizing a faulty client in 36 different FL settings with 100

test inputs.

Clients Dataset Architecture Accuracy
% (IID)

Accuracy
% (Non-

IID)

Avg.
Input

Time (s)

Avg. Lo-
calization
Time (s)

10 CIFAR10 DenseNet-121 100 100 2.41 0.44
10 CIFAR10 ResNet-50 100 100 2.40 0.22
10 CIFAR10 VGG-16 100 100 2.40 0.21
30 CIFAR10 DenseNet-121 100 100 2.42 1.29
30 CIFAR10 ResNet-50 100 100 1.18 0.70
30 CIFAR10 VGG-16 100 100 2.41 0.47
50 CIFAR10 DenseNet-121 100 100 2.42 3.26
50 CIFAR10 ResNet-50 100 100 1.37 1.24
50 CIFAR10 VGG-16 100 100 2.43 0.91
10 FEMNIST DenseNet-121 100 100 2.40 0.47
10 FEMNIST ResNet-50 100 100 2.40 0.25
10 FEMNIST VGG-16 100 100 2.40 0.18
30 FEMNIST DenseNet-121 100 100 2.41 1.37
30 FEMNIST ResNet-50 100 100 0.91 0.68
30 FEMNIST VGG-16 100 100 2.41 0.55
50 FEMNIST DenseNet-121 100 100 2.24 2.44
50 FEMNIST ResNet-50 100 100 1.42 1.24
50 FEMNIST VGG-16 100 100 2.40 1.25

Overall, our results show an increasing debugging time

when the number of clients increases, which is expected as

increasing the number of clients increases the search space.

Note that the debugging time is still in the order of seconds,

even for 50 clients. This is because 1) for n clients, the search

space has at most n possible combinations of potentially

benign n-1 clients, representing linear complexity, and 2) on a

given input, FEDDEBUG only profiles neuron activations once

while iterating over the n combinations.

Summary: On average, FEDDEBUG can efficiently identify

a faulty client in 2.1% of the total training time of a round.

B. Localization of Faulty Client(s)

To answer RQ2, we measure how accurate FEDDEBUG is

in localizing a faulty client. We inject a faulty client that

is representative of a real-world scenario and can cause a

measurable change in the global model’s performance. By

varying the number of clients, datasets, models, and data

distributions (IID and Non-IID), we create 36 different FL

configurations for FEDDEBUG’s evaluation.

Column 4 and 5 of Table I show the accuracy of FEDDEBUG

in the IID and Non-IID settings, respectively. We repeat each

experiment on 100 generated test inputs and take the average

of each metric to generalize the results. FEDDEBUG correctly

identifies a faulty client with 100% accuracy in both IID and

Non-IID settings.

Varying Noise Rate. Figure 4 shows the impact of different

noise rates on the global model prediction accuracy. We

observe that a faulty client has a measurable impact on the

global model with a noise rate of > 0.8. The global model’s

accuracy merely drops from 73.8% to 71.1% when the faulty

client has a 0.6 noise rate, and drops to 57% when the noise

rate is close to one. FEDDEBUG localizes faulty client(s) with

low noise rates, showing its robustness. Figure 7 shows the

evaluations on varying noise rates in 10 clients FL settings

with ResNet and DenseNet architectures. The X-axis shows
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Fig. 7: FEDDEBUG localization performance when a faulty

client has varying fault strength (i.e., low noise rate).

the faulty client’s noise rate, and the Y-axis represents the

average fault localization accuracy on the CIFAR-10 and

FEMNIST datasets. The results, as seen in Figure 7, indicate

that FEDDEBUG has the capability to identify low noise

faults—it successfully localizes a faulty client with 0.4 noise

rate with approximately 58% and 87.5% accuracy in DenseNet

and ResNet settings, respectively.

Summary: FEDDEBUG achieves 100% fault localization

accuracy on average on a total of 3600 test inputs when

the faulty client significantly deteriorates the global model

performance in both IID and Non-IID settings. It also

accurately localizes a faulty client with low noise rates.

Detecting Multiple Faulty Clients (RQ3). We evaluate FED-

DEBUG’s ability to identify multiple faulty clients. To this

end, we inject up to seven faulty clients in the following

experiment settings. We train ResNet-50 and DenseNet-121 on

the CIFAR-10 and FEMNIST datasets in 30 and 50 clients FL

settings. Each setting is evaluated on 10 test inputs. By default,

FEDDEBUG’s fault localization technique finds a single faulty

client. We apply FEDDEBUG in an iterative manner to find

multiple faulty clients by removing one faulty client on each

iteration, similar to traditional bug repair process, where one

bug is fixed first before the next one is investigated.

Table II presents the results of finding multiple faulty clients

in 32 FL configurations. For instance, when 7 out of 30

clients are faulty and the model is ResNet-50, FEDDEBUG

finds all seven faulty clients with 100% accuracy on CIFAR-

10 and 97.1% accuracy on FEMNIST. Compared to ResNet,

FEDDEBUG performs relatively better with DenseNet. This

behavior is expected because, compared to ResNet, DenseNet

learns better features due to dense concatenation among its

layers, resulting in better performance [58]. Thus, FEDDEBUG

performs well in localizing multiple faults with DenseNet with

an average accuracy of 99.7% on both datasets compared to

ResNet’s 80.8%.

Table II also reveals that, generally, FEDDEBUG’s local-

ization performance is positively correlated to the number of

training data points per client. Large, high-quality training

data promotes better feature learning among neurons and,

thus, yields better performance. Since the number of data

points in FEMNIST (340K) is large compared to CIFAR-

10 (40K), clients in the FEMNIST settings have significantly

TABLE II: FEDDEBUG’s fault localization in 32 FL configu-

rations with multiple faulty clients, ranging from two to seven.

Faulty
Clients

Total
Clients

Architecture Accuracy %
(CIFAR-10)

Accuracy %
(FEMNIST)

2 30 ResNet-50 100 100
3 30 ResNet-50 100 100
5 30 ResNet-50 100 98
7 30 ResNet-50 100 97.1
2 30 DenseNet-121 100 100
3 30 DenseNet-121 100 100
5 30 DenseNet-121 100 100
7 30 DenseNet-121 100 100
2 50 ResNet-50 50 80
3 50 ResNet-50 66.7 66.7
5 50 ResNet-50 54 60
7 50 ResNet-50 57.1 62.9
2 50 DenseNet-121 100 100
3 50 DenseNet-121 100 100
5 50 DenseNet-121 100 100
7 50 DenseNet-121 100 95.7
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Fig. 8: FEDDEBUG finds multiple faulty clients in a linear

time. Total clients are 50 in each graph.

larger training data than clients in the CIFAR-10 settings. As a

result, FEDDEBUG average localization accuracy is 78.5% in

the ResNet-CIFAR experiment, while it has 83.1% localization

accuracy in the ResNet-FEMNIST experiment. FEDDEBUG

finds multiple faults with linear time complexity, as shown

in Figure 8 with 50 clients. The input generation time is

almost constant, as the number of clients is fixed. However,

the localization time increases as we increase the number of

faults from 2 to 7. For instance, it localizes two faulty clients

in 3.6 seconds and five faulty clients in 4 seconds.

Scalability (RQ4). Our findings also show that FEDDEBUG

scales to larger datasets and an increasing number of clients

in FL. Figure 9 summarizes the impact on FEDDEBUG’s

ability to identify a faulty client when the number of clients

changes from 25 to 400 and the training data size per client

changes. We perform this experiment with two faulty clients

in the FEMNIST-DenseNet configuration. Figure 9-(a) verifies

that FEDDEBUG’s fault localization accuracy only reduces

to 75% even when the number of clients increases to 400.

FEDDEBUG’s debugging time increases linearly as the number

of clients increases, consistent with the scale-up properties

of general distributed systems, as shown in Figure 9-(b).

When the number of clients increases, less data is used to

train a client’s model, which may reduce the accuracy of

clients’ models. Figure 9-(c) also shows that FEDDEBUG’s
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Fig. 9: FEDDEBUG retains scalability on a large number of

clients.

fault localizability also increases when the number of data

points per client increases, and it is also robust against low

performing client models. For instance, when the number of

data points increases from 850 to 1700, FEDDEBUG’s local-

ization accuracy also changes from 75% to 85%, respectively.

Summary: Our experiment results provide concrete evi-

dence that FEDDEBUG preserves scalability properties both

in terms of time overhead and in the presence of multiple

faults. It successfully identifies multiple faulty clients in

32 different FL configurations with an average accuracy of

90.3%.

C. Neuron Activation Threshold

There is no standard threshold of neuron activations [40]

and prior work uses experiential value for different use

cases [13]. We evaluate the impact of different activation

thresholds on FEDDEBUG’s faulty client localizability. We

take 30 clients including five faulty clients, and train ResNet-

50 and DenseNet-121 on both the CIFAR-10 and FEMNIST

datasets. We repeat each experiment on 10 different inputs

generated by Algorithm 1.

Figure 10 shows the result of these experiments. The X-

axis represents the neuron activation thresholds, ranging from

0 to 0.9. The Y-axis shows the FEDDEBUG’s localization

accuracy in a given experiment setting. For instance, at the

0.003 threshold, the average localization accuracy across four

settings is 100%. On the other hand, at 0.5 threshold, the

average accuracy decreases significantly to 73.5% across these

configurations. Specifically, for DenseNet-121 and FEMNIST

experiment in Figure 10-(d), the localization drops to 64%

at the 0.5 neuron activation threshold. We observe that FED-

DEBUG performs better at lower thresholds (< 0.01) across

different models and datasets. This behavior is expected be-

cause lower thresholds increase the sensitivity of FEDDEBUG’s

localization approach. It starts monitoring most of the neurons’

compared to a higher threshold, where FEDDEBUG profiles

only a few neurons crossing the threshold.

D. Threats to Validity

To alleviate threats to external validity, we use established

state-of-the-art FL experimental models (ResNet-18, ResNet-

34, ResNet-50, DenseNet-121, and VGG-16), two standard-

ized datasets from FL benchmarks, two real-world data dis-

tributions, and an industrial scale FL framework. Similarly,

we remove bias in fault injection using standard noisy labels

technique from the ML literature, to make a fault reflective
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Fig. 10: FEDDEBUG performance at neuron activation thresh-

old on 30 clients, including five faulty clients.

of real-world scenarios. We also experiment with varying

noise rates for better evaluations, transparency, and fairness.

Another source of external threats to validity is randomness

in FEDDEBUG’s input selection method. We minimize such

randomness by evaluating each configuration on at least 10

and 100 test inputs and reporting the average results.

VI. RELATED WORK

Debugging ML models has been extensively explored in

recent works [6, 12, 38, 40, 47, 49, 51]. The primary objectives

of these approaches are interpretability, generating new test

cases by carefully perturbing the real-world training inputs to

improve performance and to find bugs and corner cases in the

given model. These approaches require access to the training

and testing data, and some are limited to testing a single neural

network; hence, such approaches cannot be directly imported

into FL. Lack of access to client data and resources in FL

settings makes testing and debugging FL more challenging. If

applied to FL, these testing approaches will find every client’s

model defective. Clients’ models are architecturally similar

but trained on local clients’ data, and thus their models are

semantically different from each other. Identifying defects in

an isolated model is not practical either. Every client’s model

has weaknesses that will surface on carefully selected test

data. FEDDEBUG overcomes these problems by focusing on

the commonality of models instead of differences.

Most relevant work to FEDDEBUG primarily focuses on

finding clients’ contributions to a global model without expos-

ing the private data to a central server [56]. In practice, indi-

vidual clients report information about training, such as dataset

size and performance metrics, to the central aggregator [23,

25, 42, 54, 57]. Existing approaches use prior information

e.g., previous task performance and data quality obtained

via third-party services, to evaluate clients’ models [46].

Other approaches recommend cross-validating clients’ mod-
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els on another client’s local dataset [35]. Another alternate

is maintaining a validation dataset at the central server to

evaluate clients’ models [8, 34]. A major limitation of the

above FL-related approaches is that the aggregator server

depends entirely on the client's reported information or test

data to evaluate clients’ models. The aggregator also assumes

that all clients are trustworthy about their performance in

these approaches, which attracts adversarial clients like the

ones in targeted poisoning attacks [39]. Cross-validation is

also prohibited due to limited computing resources for edge

devices such as smart home sensors. FEDDEBUG overcomes

the limitations of debugging faulty clients with interactive and

automated approaches that preserve privacy.

VII. CONCLUSION

Federated learning promotes collaborative model training

across millions of clients—the type of learning that was

previously impossible due to privacy concerns related to

user data. However, FL poses unprecedented challenges in

debugging a faulty client responsible for deterring global

training. With minimal information about the training process

and non-existent debugging techniques, such issues are often

left untreated. FEDDEBUG enables interactive and automated

fault localization in FL. It adapts conventional debugging

practices in FL with its breakpoint and fix and replay feature.

It offers a novel differential testing technique to automatically

identify the precise faulty clients. We demonstrate that FED-

DEBUG identifies a faulty client with 100% accuracy within

2.1% of a round’s training time, advocating for FEDDEBUG’s

efficacy and efficiency. With FEDDEBUG, we pave the way

for advanced software debugging techniques to be adapted

in the emerging area of federated learning and the broader

community of machine learning practitioners.
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